Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(6): 1688-1704, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-36245125

RESUMO

Circular RNAs (circRNAs) are a group of non-coding RNAs with a unique circular structure generated by back-splicing. It is acknowledged that circRNAs play critical roles in cardiovascular diseases. However, functional studies of circRNAs were impeded due to lack of effective in vivo silencing approaches. Since most circRNAs are produced by protein-coding transcripts, gene editing typically affects the coding activity of the parental genes. In this study, we developed a circular antisense RNA (cA-circSlc8a1) that could silence the highly expressed circRNA circSlc8a1 in the mouse heart but not its parental Slc8a1 linear mRNA. Transgenic cA-circSlc8a1 mice developed congestive heart failure resulting in a significant increase in the body weight secondary to peripheral edema and congestive hepatopathy. To further test the role of circSlc8a1, we generated transgenic mice overexpressing circSlc8a1 and observed a protective effect of circSlc8a1 in a pressure overload model. Mechanistically, we found that circSlc8a1 translocated into mitochondria to drive ATP synthesis. While establishing a transgenic murine model for antisense-mediated circRNA silencing without interfering with the parental linear RNA, our finding revealed the essential role of circSlc8a1 in maintaining heart function and may lay the groundwork of using the circular antisense RNA as a potential gene therapy approach for cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Insuficiência Cardíaca , RNA Antissenso , RNA Circular , Trocador de Sódio e Cálcio , Animais , Camundongos , RNA Circular/genética , RNA Mensageiro , Trocador de Sódio e Cálcio/genética
2.
Cancers (Basel) ; 14(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428803

RESUMO

Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer, and more than 70% of patients are diagnosed at advanced stages. Despite the application of surgery and chemotherapy, the prognosis remains poor due to the high relapse rate. It is urgent to identify novel biomarkers and develop novel therapeutic strategies for EOC. Circular RNAs (circRNAs) are a class of noncoding RNAs generated from the "back-splicing" of precursor mRNA. CircRNAs exert their functions via several mechanisms, including acting as miRNA sponges, interacting with proteins, regulating transcription, and encoding functional proteins. Recent studies have identified many circRNAs that are dysregulated in EOC and may be used as diagnostic and prognostic markers. Increasing evidence has revealed that circRNAs play a critical role in ovarian cancer progression by regulating various cellular processes, including proliferation, apoptosis, metastasis, and chemosensitivity. The circRNA-based therapy may be a novel strategy that is worth exploring in the future. Here, we provide an overview of EOC and circRNA biogenesis and functions. We then discuss the dysregulations of circRNAs in EOC and the possibility of using them as diagnostic/prognostic markers. We also summarize the role of circRNAs in regulating ovarian cancer development and speculate their potential as therapeutic targets.

3.
Mol Ther ; 29(3): 1138-1150, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33279723

RESUMO

Cardiac fibrosis is a common pathological feature of cardiac hypertrophy. This study was designed to investigate a novel function of Yes-associated protein (YAP) circular RNA, circYap, in modulating cardiac fibrosis and the underlying mechanisms. By circular RNA sequencing, we found that three out of fifteen reported circYap isoforms were expressed in nine human heart tissues, with the isoform hsa_circ_0002320 being the highest. The levels of this isoform in the hearts of patients with cardiac hypertrophy were found to be significantly decreased. In the pressure overload mouse model, the levels of circYap were reduced in mouse hearts with transverse aortic constriction (TAC). Upon circYap plasmid injection, the cardiac fibrosis was attenuated, and the heart function was improved along with the elevation of cardiac circYap levels in TAC mice. Tropomyosin-4 (TMP4) and gamma-actin (ACTG) were identified to bind with circYap in cardiac cells and mouse heart tissues. Such bindings led to an increased TPM4 interaction with ACTG, resulting in the inhibition of actin polymerization and the following fibrosis. Collectively, our study uncovered a novel molecule that could regulate cardiac remodeling during cardiac fibrosis and implicated a new function of circular RNA. This process may be targeted for future cardio-therapy.


Assuntos
Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibrose/prevenção & controle , Miócitos Cardíacos/metabolismo , RNA Circular/genética , Fatores de Transcrição/metabolismo , Tropomiosina/metabolismo , Actinas/genética , Animais , Proteínas de Ciclo Celular/genética , Fibrose/genética , Fibrose/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Polimerização , Fatores de Transcrição/genética , Tropomiosina/genética , Remodelação Ventricular
4.
Cell Death Differ ; 26(12): 2758-2773, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31092884

RESUMO

Yap is the key component of Hippo pathway which plays crucial roles in tumorigenesis. Inhibition of Yap activity could promote apoptosis, suppress proliferation, and restrain metastasis of cancer cells. However, how Yap is regulated is not fully understood. Here, we reported Yap being negatively regulated by its circular RNA (circYap) through the suppression of the assembly of Yap translation initiation machinery. Overexpression of circYap in cancer cells significantly decreased Yap protein but did not affect its mRNA levels. As a consequence, it remarkably suppressed proliferation, migration and colony formation of the cells. We found that circYap could bind with Yap mRNA and the translation initiation associated proteins, eIF4G and PABP. The complex containing overexpressed circYap abolished the interaction of PABP on the poly(A) tail with eIF4G on the 5'-cap of the Yap mRNA, which functionally led to the suppression of Yap translation initiation. Individually blocking the binding sites of circYap on Yap mRNA or respectively mutating the binding sites for PABP and eIF4G derepressed Yap translation. Significantly, breast cancer tissue from patients in the study manifested dysregulation of circYap expression. Collectively, our study uncovered a novel molecular mechanism in the regulation of Yap and implicated a new function of circular RNA, supporting the pursuit of circYap as a potential tool for future cancer intervention.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , RNA Circular/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Células Hep G2 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Camundongos , Biossíntese de Proteínas , RNA Circular/metabolismo , Fatores de Transcrição/metabolismo , Transfecção , Translocação Genética , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...